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Abstract

With a view to the ongoing Bologna project (luww.aniv.erd nlin. AO/0109025) ge-
neral organizing principles of emergent structures in social systems are being
discussed with a view to the meaning of decentralization. It is proposed to intro-
duce decentralization as a principle for organizing emergent structuresin a gene-
ric way utilizing aspects of the insight gained by the Santa Fe school dealing
with self-organized criticality. The techniques utilized come from graph theory,
category theory, and in particular quantum gravity, which bear a strong potential
for a multitude of applications in research fields with a significant interdiscipli-
nary scope. This is especially important for applications in the organization of
social systems which usually call for an interaction of logic and hermeneutic.

1 Introduction: The Mediation of Micro- and Macrolevels

When dealing with the emergence of structures, the phenomenon of emergence
itself, and the concept of emergence we derive from it, point mainly to a syste-
matic deficiency of inference. In other words, on the one hand, emergence refers
to models rather than to processes: Very much like the concept of complexity,
the concept of emergence is attributed to the models, not to processes proper.
The reason for thisis that we never actually deal with the ,rea” world asitis(in
ontological terms), but only with the ,,modal“ world as we model it (in episte-
mological terms) according to what we perceive. On the other hand, emergence
Is closely related to innovation. We call a phenomenon innovative, if its appea-
rance cannot be inferred within a utilized language describing some process
level, although the language is completely specified. To be more precise: We
cannot formulate a model in a macrolanguage, given the microlanguage. ([5], p.
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47, cf. p.72) The point is here that we visualize processes as acting on two levels
relative to each other, one the microlevel on which a large number of relevant
processes take place being performed by individual agents associated with speci-
fic actions, the other the macrolevel on which a collective phenomenon can be
observed which can be understood as a kind of superposition of al the individu-
a actions being performed on the microlevel. In other words: Observable
processes show up on the macrolevel of he world, this level being defined pri-
marily in terms of the perceptive properties of observers. But they , happen” on
the microlevel. Thisis basicaly true for al possible systems. But in the case of
social systems, the agents on the microlevel and the observers on the macrolevel
can be identical. This introduces an explicit notion of self-reference into the in-
terpretation of observed phenomena. The result is that detailed behaviour of in-
dividuals who comprise a given socia aggregate cannot be retraced in the ob-
served collective behaviour of that same aggregate. This aspect has been
discussed in detail by Thomas Schelling [18], but much earlier already by Henri
Lefebvre [13] and Jean-Paul Sartre [17] who term it ,,counter-finality“. With a
view to socia systems of this kind, self-reference shows up in the fact that on
the microlevel the ,,purposive’ behaviour of persons is a relational concept in
itself, because it depends on constraints determined by the environment which
reduce its degrees of freedom eventually rendering it completely contingent. On
the other hand, individuals depend on their essentially local knowledge produ-
ced by local interactions (on their microlevel) so that the global outcome is ge-
nerically a result of superposition, not strictly independent of a single action ta-
ken, but in any case different from it. Institutional constraints (e.g. of legal sort),
and feedback loops (of information) complicate the mediation of micro- and
macrolevels and endow the process with an implicitly recursive characteristic.
([18], pp. 20sq., 33, 50) There is another point to this: We realize that social
processes depend decisively on the concrete information flow. In this sense, a
process (or phenomenon) can be said to be emergent, if at some time the archi-
tecture of information processing has changed such that a more powerful level
of intrinsic computation has appeared which has not been present before. This
criterion taken from Crutchfield [2] can be shown to be essentially equivaent to
the mediation criterion between microlanguage and macrolanguage given above.
Visualized this way, innovation occurs at the threshold of information proces-
sing when the agent’s modelling capacity approaches the complexity of the sa-
me agent’s internal model. ([2], p.25) This is so because (as we have seen abo-
ve) the agent is always co-acting with others, and thus each model contains at
least one self-model. At the same time, this has an important consequence for
the relationship between order and disorder: because stability (order) is necessa-
ry for the consistent information storage while instability (disorder) is necessary
for the production of information and its communication. Hence, it is the dialec-
tic of stability and instability which is characterizing the modelling of evolutio-
nary hierarchies of structure. And it is this trade-off which is relevant for com-
putation theory. So if agents model their environment, their results depend on
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their capacity of identifying regularities (which explicitly takes place in terms of
differentiating differences). This in turn depends on their computational resour-
ces and the language (model classes) utilized. Innovative emergence then, is the
representation of attaining a new model class which improves the modelling
processin the first place.

What we find therefore, is that the production of knowledge in terms of model-
ling the environment for the benefit of an adequate inference about observable
processes can be visualized as an algorithmic form of compuational process.
This does not only mean that social processes are being modelled in terms of
computational processes, but that in fact they are such processes. In other
words. Information is physical. ,,Our world is the information process that is
running in the computer, but this computer is not in our world.“ (Edward
Fredkin) ([24], p.58) In this sense, information shows up as the foundation of the
reality we perceive. This computational process is algorithmic in the sense that
for socia systems, , purposive behaviour can be reflected by strategic choices
of actions undertaken. For humans particularly, but not exclusively, the invento-
ry of available agorithmsis explicitly determined by the process of socializati-
on. Hence, when talking about computation in this very fundamental sense, we
are referred to a methodological framework which is concerned with problems
of graph colouring, connectivity of networks, and so forth. Indeed, combinatori-
a optimization can be applied to such problems, despite the problem of irratio-
nal action, because information within this context can be roughly compared to
»abstract pheromone* as it is introduced in agorithmic studies of artificial ants
colonies. ([4], [25])

Now, the topic of decentralization is important for all of this, because it is re-
flecting a basic organizational structure which governs both the phenomenol ogi-
cal level of observations and the methodological level of modelling, respective-
ly. In terms of the latter, this can be seen as a result of the intrinsic multiper-
spectivity of the models utilized. Hence, decentralization turns out to be a uni-
fied onto-epistemic concept rather than a mere pragmatic aspect. [16] In terms of
the former, decentralization shows up as a straightforward consequence of deri-
ving global coordination from local interactions. As Crutchfield and Mitchell
have discussed in detail, centralized organization has three magjor drawbacks as
compared to decentralized organzation: namely with respect to the speed of in-
formation processing (centres can be bottlenecks), robustness (central failure
destroys system structure), and equitable resource allocation (centres draw re-
sources). [3] Crutchfield and Mitchell clam (and we agree) that evolution
proceeds via a series of epochs which are connected to each other by distinct
computational innovations. Hence, they can visualize the problem illustrated
here as the evolutionary discovery of methods for emergent global computation
in aspatialy distributed system consisting of locally interacting processors. This
Is a useful viewpoint to be taken when talking about the ssmulation of such
processes. And there are interesting results dealing with what they call ,, propa-
gation of domain walls* (or embedded particles). Note however that for the pro-
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blem we have in mind here when referring to the emergence and evolution of
urban structures, the concepts of space and time themselves have to be que-
stioned. Because social structures, such as urban structures in particular, say, are
not actually evolving within a given space: Instead, they produce their own
space. [13] This aspect has been recently discussed in more detail (unfortunate-
ly, without referring to the pioneering work of Lefebvre) by Hillier and Hanson.
([8], [9]) In order to model this primarily architectural space they develop what
they call a ,morphic language* different from mathematical modelling in the
strict sense, and from natural languages utilized in hermeneutics: In fact, while
the latter strongly individuates primary morphic units within the framework of a
comparatively permissive formal (syntactic) structure, the former utilizes very
small lexicons and very large syntaxes which are virtually useless for represen-
ting the world as it appears. Hence, visualized this way, mathematical languages
do not represent or mean anything except their own structure. The morphic lan-
guage however utilizes a small lexicon and gives primacy of syntax over se-
mantic representation. Hence, it is built up from a minimal initial system mea-
ning its own structure (smilar to mathematics), but it can be realized within ex-
perience and is subject to a rule-governed sort of creativity (similar to natural
languages). ([9], pp. 48-50) For describing the intelligibility of space, Hillier and
Hanson explicitly utilize aspects of combinatorial topology when modelling
gpatial distributions of urban structures, often referring to (information) transport
properties of graphs, connectivity, and percolation. This is actualy the point
from where we start our own agpproach utilizing a more generalized conception
from the outset.

The idea is to eventually draw on the resources of category theory (or topos
theory), because thisisthe field which comes closest to verbal conceptualization
in the sense of Hillier's and Hanson's morphic language, without giving up the
precise syntactic of mathematics. The point is mainly that categories provide
both: the mathematical modelling of physicaly observable structures, and the
logic conceptualization of this modelling, at the same time. Thisis the reason for
starting here with relevant aspects of fundamental physics (in terms of recent
results on quantum gravity). They may serve as a general framework for ulti-
mately translating modelling procedures from physics to social science, avoiding
the compl ete retreat into the domain of qualitative metaphors, but furnishing in-
stead a semi-quantitative (morphic in this sense) approach which is resilient
enough to remain relevant and sufficiently stable on the edge between logic and
hermeneutic. However, it is not possible here to assemble all aspects of the theo-
ry utilized. This has been done in more detail elsewhere. (Cf. [27] through [35]
for more explicit expositions. In particular, [32] gives a recent, not too technical
survey of the general idea as derived from physics including detailed references.
See [36] for an introduction to the Bologna project where these aspects shall be
put to empirical test.) But what we will do here is to shortly summarize the basic
Ideas, discussing emergent computation as implicit in the concept of spin net-
works introduced by Roger Penrose (section 2), and referring to the underlying
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fundamental aspects of this approach as they are relevant for our topic here
(section 3). We will soon notice that presently ongoing work in this field turns
out to be not far removed from the line of approach taken here, although the
methods applied may be diffferent in detail. But with a view to more recent ex-
positions on complexity theory or population ecology such as [10] and [23], and
on spatial economy such as [11] and [7], we can recover a lot of what will be
said here under a more fundamental perspective. This is also true for a number
of practical issues put forward in the political field. (See[1], [6], [12], [14], [15].
Also [25] is very illustrative for economic issues.) Similar aspects can also be
retrieved from [19] through [22]. But first we start with the already mentioned
point of visualizing space and time, the basic categories in which we perceive
and reflect, themselves, as derived (hence produced) quantities which constitute
our world as we perceiveit.

2 Emergent Computation

The original idea of introducing a purely combinatorial (abstract) structure in
order to eventualy ,derive® space and time from it such that relativity and
guantum theory show up as two different perspectives of the same underlying
whole, goes back to Roger Penrose who invented spin networks. Basically, spin
networks in this sense are trivalent graphs with a combinatorial loading called
spin numbers. The ideais to represent abstract interactions between vertices: Be
a, b, ¢ natural numbers such that for any i, j, k the conditionsi +j =a,i + k=D, |
+ k = ¢ can be solved with non-negative integers. Then the edges of the graph
can be visualized as expressing interactions of particles with spin aand b which
produce a particle with spin c. Hence, for an unrestricted number of vertices and
edges, we get a spin network consisting of vertices interacting by permanently
exchanging spin numbers n such that n = 2s (,measured” in terms of h). We
could visualize therefore, the network as one which is generically fluctuating.
Note however that no conception of space and time is entering the definition yet,
so that we deal with a purely combinatorial process producing numbers as an
output according to a given input. In this sense, we can think of this network
fluctuation as of a computational process. In other words. There is a permanent
processing of information which is underlying the structure of space and time on
afundamental level. If we take ,large portions® of this network then, and choose
two single strands of it, we can define the following relational structure: Take
large portions K of the network, single out two smaller strands, N and M say,
and compare their relative positions in terms of an isolated single strand (acting
as asingle edge) of spin number 1, then we can, according to the possibilities of
re-combination, determine an appropriate angle between units which by super-
position produces an angle in terms of Euklidean geometry. The total loading of
aunit is given by what Penrose calls value of the network, essentially expressing
ascalar product of spin network states. Be I such a state, and I''* its dual. Think
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of the portions of the network as being knotted by closing the strands to them-
selves. Then, in Dirac notation, we have for the value V of a spin network

<[> =V([#r'*)
with

VL.1=1 QWY 3 e-2)N

Here, the product is being taken over all edges, and the sum over all vertices.
Then, j is the respective edge label, N the number of closed loops, and € the
permutation rule for the signs being referred to as intertwining operation. The
spin geometry theorem tells us then that the probability ratio of finding the net-
work in consecutive states (by e.g. repeating the procedure of comparing isola-
ted strands with respect to the ,,lump® network twice) is given by (1/2) cos 6,
with 6 being a (Euklidean) angle. Hence, by a statistical choice of strands from
the (lump) network, we can define an angle and thereby actually produce it out
of a purely combinatorial structure due to a combinatorial process of selection.
In this sense, the fundamentally underlying process of computation described
here in preliminary terms as a permanent processing of information, is also a
process of emergent computation such that from the underlying process classi-
city can eventually emerge and show up in terms of macroscopic physical
structures. The network structure can be made more explicit when projecting it
onto a spherical surface. In fact, as it turns out, spin networks can be better vi-
sualized as a fundamental combinatorial level of space rather than of space-time
as originaly intended by Penrose. In this sense, Rovelli and Smolin have re-
interpreted his ansatz somehow: They start with loops from the outset and show
that since spin network states <S[Ispan the loop state space, it follows that any
ket state > is uniquely determined by the values of the S-functionals on it,
namely of the form Y(S) := <S> . To be more precise, Rovelli and Smolin ta-
ke embedded spin networks rather than the usual spin networks, i.e. they take
the latter plus an immersion of its graph into a 3-manifold. Considering then, the
equivalence classes of embedded oriented spin networks under diffeomor-
phisms, it can be shown that they are to be identified by the knotting properties
of the embedded graph forming the network and by its colouring (which is the
labelling of its links with positive integers referring to spin numbers). When ge-
neralizing this concept even further, a network design may be introduced as a
conceptual approach towards pre-geometry based on the elementary concept of
distinctions, as Louis Kauffman has shown. In particular, space-time can be vi-
sualized as being produced directly from the operator algebra of a distinction. If
thinking of distinctions in terms of 1-0 (or yes-no) decisions, we have a direct
link here to information theory, which has been discussed recently again with a
view to holography. The network which is the dual of the spin network is the
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appropriate triangulation of the spherical surface. This triangulation forms the
dual 1-skeleton of the spin network. The length numbers attributed to triangle
edges correspond to the spin numbers in the original network. Hence, they
change accordingly. Asthe triangulation is the minimal covering of this surface,
the length of a triangle edge gives a quantized portion of (3-) space. In other
words, the quantum of a surface (area) and the quantum of a space (volume) can
be derived directly from the network pattern. To be more precise, area A and
volume V will turn out to be proportional to I,” and I,°, respectively. So we can
think of the ,fundamental level* of physics (or rather of the boundary layer of
this level) in terms of the fluctuating network structure corresponding at the sa-
me time to a triangulation which is the network’s dual. If one visualizes this
structure as one which is fluctuating all the time, then one gets an animated im-
pression of the fundamental level of physics which is easily comparable with a
kind of permanent computational process underlying all what there actualy is.
This is roughly comparable to permanently ongoing communication on the
microlevel of society.

Following a convention introduced by Baez, the permanent re-arrangement of
spin numbers (and triangle edge lengths) is called spin foam. Note that visuali-
zed as a sequence, a spin foam can be thought of as a kind of time evolution of
spin networks. However, the concept of time (and causality) is ill-defined on
that fundamental level. A straightforward ,,quantization® of time (proportional to
t,) is not satisfactory so far, because it depends on the outcome of the question
whether there is any time ordering on that level at all and whether therefore, ti-
me is an emergent concept (as is ultimately space). But if visualized as a se-
guence of spin network states, spin foams (thought of as constituting a kind of
proto-space-time) turn out to be two-dimensiona analogues of Feynman graphs:
They are in fact 2-complexes with faces, edges, and vertices such that the am-
plitudes of faces and edges correspond to propagators and vertex amplitudes to
interactions. A very useful model for spin foams is given by Barrett and Crane
(developed 1998 until 2000) as a good candidate for illustrating the basic idea.
The amplitude of a spin foam is given by the following product:

Z(F) = ia @ A) Mea @ A©) [va @ AV),

where f, e, v are faces, edges, and vertices, respectively, and the A(n) are the n-
simplicesin the triangulation. The partition function is then

ZM) =3 Z(F).

Now what is the ,,macroscopic” equivaent of the motion described here in terms
of the ,,microscopic* level? Recall that according to the standard terminology, a
loop in some space 2, say, is a continuous map y from the unit interval into
such that y(0) = y(1). The set of all such maps will be denoted by Q%, the loop
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space of 2. Given aloop element y, and a space A’ of connections, we can defi-
ne a complex function on A’ x Q%, the socalled Wilson loop such that Ta(y) :=

(IUN) Trgr P exp fy A. Here, the path-ordered exponential of the connection
AUA’, aong the loop v, is aso known as the holonomy of A along y. The holo-
nomy measures the change undergone by an internal vector when parallel trans-
ported along y. The trace is taken in the representation R of G (which is actually
the Lie group of Yang-Mills theory), N being the dimensionality of this repre-
sentation. The quantity measures therefore the curvature (or field strength) in a
gauge-invariant way. Over a given loop v, the expectation value < T(y)> turns
out to be equal to a knot invariant (the ,Kauffman bracket”) such that when
applied to spin networks, the latter shows up as a deformation of Penrose’' s value
V(). Hence, spin networks are deformed into quantum spin networks (which
are essentialy given by a family of deformations of the original networks of
Penrose). There is also a simplicial aspect to this: Loop quantum gravity provi-
des for a quantization of geometric entities such as area and volume. The main
sequence of the spectrum of areae.g., showsup as A = 8mhG ¥(ji(ji + 1)), for
c = 1, where the j’s are half-integers labelling the eigenvalues. (Compare this
with the remark on space quantization above.) This quantization shows that the
states of the spin network basis are eigenvalues of some area and volume ope-
rators. We can say that a spin network carries quanta of area along its edges, and
guanta of volume at its vertices. A quantum space-time can be decomposed the-
refore, in abasis of states visualized as made up by quanta of volume which in
turn are separated by quanta of area (at the intersections and on the links, re-
spectively). Hence, we can visualize a spin network as sitting on the dual of a
cellular de-composition of physical space. As far as the dynamics of spin net-
works is concerned, there is still another, more recent approach, which appears
to be promising as to the further development of topological aspects of quantum
gravity (referred to as TQFT).

We notice from what we said above that a spin foam is a two-dimensional com-
plex built from vertices, edges, and polygonal faces, with the faces labelled by
group representations, and the edges labelled by intertwining operators. If we
take a generic dlice of a spin foam, we get a spin network. Hence, a spin foam is
essentially taking one spin network into another, of the form F: W - W', Just as
spin networks are designed to merge the concepts of quantum state and geome-
try of space, spin foams shall serve the merging of concepts of quantum history
and geometry of space-time. Very much like Feynman diagrams do, also spin
foams provide for evaluating information about the history of a transition of
which the amplitude is being determined. Hence, if W and W’ are spin networks
with underlying graphs y and y', then any spin foam F. W - W' determines an
operator from L*(A, /G,) to L*(A, /G,) denoted by O such that <@’, O ®> =
<@, W><Y o> for any states d, d’. The evolution operator Z(M) is a linear
combination of these operators weighted by the amplitudes Z(O). Thisleadsto a
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discrete version of a path integral. Hence, re-arrangement of spin numbers on
the ,combinatorial level“ is equivalent to an evolution of states in terms of Hil-
bert spaces in the ,,quantum picture” and effectively changes the topology of
space on the ,cobordism level“. This is the level we ultimately perceive when
observing phenomena. In fact, change of form (Gestalt) can be visuadized as a
change of its underlying topology. Evolution (in macroscopic terms) can be un-
derstood therefore, as a kind of manifold morphogenesis in (emergent) time: Vi-
sualize the n(= 4, say)-dimensional manifold M (withoM =S [ S - digointly)
asM: S - S, that isasaprocess (or as time) passing from an (n-1)-dimensional
space S to another (n-1)-dimensional space S'. (Here n-1 = 3.) This is the men-
tioned cobordism. Note that composition of cobordisms holds and is associative,
but not commutative. The identity cobordism can be interpreted as describing a
passage of time when topology stays constant. Visualized this way, TQFT might
suggest that general relativity and quantum theory are not so different after all.
In fact, the concepts of space and state turn out to be two aspects of a unified
whole, likewise space-time and process. So what we have in the end, is a rough
(and smplified) outline of the foundations of emergence, in the sense that we
can localize the fine structure of emergence (the re-arrangements of spin num-
bers in purely combinatorial terms being visualized as a fundamental fluctuati-
on) and its results on the ,macroscopic* scale (as a change of topology being
visualized by physical observers). This is actualy what we would expect of a
proper theory of emergence. And thisis also what we aim at in this present ap-
proach: The topological domain of the macroscopic scale will be discussed in
terms of a suitable morphic language, if developed for discussing the emergence
of social, e.g. urban structures. The underlying microscopic process structure
which actually produces the macroscopic scae refers then to the actions taken
by individual agents self-organizing into groups and institutions. In other words:
What Hillier and Hanson call the intrinsic logic of an emergent spatial structure
(, space” here in the sense of , socia space”) is nothing but the operation of the
selected agorithmic process representing the communicative ineractions on the
microlevel of society. This operative procedure can be easily visualized as a
process of emergent computation as motivated above.

3 Fundamental Infor mation Processing

The important point is to notice here that from the beginning on, the concept of
time isintegrated into the geometrical representation from the outset. But it does
not show up as a function, because the map which carries one space into the
other isitsaelf a manifold space. Hence, time is related to the frequency of topo-
logy changes encountered (by literally counting them). This is a notion of time
which is very much on the line of the time concept introduced by Prigogine in
the seventies. Essentiadly, time can be visualized as a measure for the structural
change of the (spatial) world. These results can also be formulated in the lan-
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guage of category theory: As TQFT maps each manifold S representing space to
a Hilbert space Z(S) and each cobordism M: S - S representing space-time to
an operator Z(M): Z(S) - Z(S') such that composition and identities are preser-
ved, this means that TQFT is a functor Z: nCob - Hilb. Note that the non-
commutativity of operators in quantum theory corresponds to non-
commutativity of composing cobordisms, and adjoint operation in quantum
theory turning an operator A: H - H' into A*: H' - H corresponds to the ope-
ration of reversing the roles of past and future in a cobordismM: S - S obtai-
ning M*: S - S. So what we do realize after all is that spin networks, in parti-
cular as being visualized in terms of their quantum deformations, turn out in the-
se models as the fundamental fabric of the world, in the sense that they are un-
derlying and eventually actually producing the world of classical physics. Note
in passing that this has an important philosophical consequence, because in
being afunctor and atheory at the same time, TQFT is constituted in an intrinsi-
cally onto-epistemic way: In other words, we model a physical structure in ma-
thematical terms (with ontologically relevant results), and at the same time we
model the modelling itself with respect to the specific logic which is underlying
the category we are handling (with epistemologically relevant results. Hence, we
do both: theoretical research and its conceptualizing.

The question is now as to the mediating concept which translates processes on
the microlevel to processes on the macrolevel. This can be achieved by utilizing
knot theory: We start for simplicity with crossings in non-orientied entangle-
ments of strings. It is possible then to produce two diagrams out of a crossing by
splitting it in two different ways. Labelling the various regions (produced by the
first or the second version of splitting) by A and B, respectively, we find a
whole family tree of possible splittings which end in a collection of Jordan cur-
ves called states of the diagram. Note that this tree structure exhibits clearly the
relationship of form (Gestalt) and (underlying) dynamics: The ,,moves’ necessa-
ry to resolve a knot and reduce the various crossings to states represent the im-
plicit motion which is hidden underneath the morphological form of a knot. In
other words, by performing prescribed (formal) moves one is actually recon-
structing the motion which was necessary to form the knot in the first place.
Thereisin fact alarge class of possible (formalized) moves of this type, ranging
from Reidemeister moves to Pachner moves (which turn out to be very signifi-
cant with a view to the unfolding of spin networks, but on which we cannot
comment here in this present paper). This relationship between actual ,form*
(morphology) and implicit motion (having eventually produced this form) re-
sembles closely the relationship between implicit and explicit order as introdu-
ced along time ago by David Bohm. It is also comparatively easy to demon-
strate the algebraic relevance of crossings — illustrating the aspect of implicit
motion under another perspective: Let a crossing represent the interaction of two
curves, of a and b, say. We can interpret the result of this interaction as an ab-
stract product ab which turns out to be non-associative. Hence, a close relations-
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hip can be easily demonstrated between the graphical representation of (knot)
crossings and a non-associative algebra (of knots). In fact, as Kauffman can
show in more detail, this approach leads to logical structures, if the crossings are
orientied. We associate now a polynomia with a knot diagram in the following
way: If [0] isthe number of loops in state o (after disentangling all crossings
of aknot) and <K[g> the product of all markings (labellings) in g, then the ex-
pression

<K>=<K>(A,B,d) = ¥, <KG> d°"

gives aweighted sum over states and is called the bracket polynomial of the dia-
gram K. We can aso introduce a normalization condition in order to ensure iva-
riance of the polynomia under neighborhood isotopy. If so, then

Ly = (=AY <K>,

where w(K) = Y ,0ck) €(p) isthe winding number (permuting signs). In order to
compare this with more well-known aspects of combinatorial topology, we can
think of the appropriate colouring of knots which leads to problems such as the
colouring of neighboring regions or the street network problem (,travelling sa-
lesman® and its variants). Recall that in combinatorial topology, characteristic
numbers (such as the winding number) of forms can be utilized to infer proper-
ties of the activity of suitable vector field actions defined on the respective
forms.

Two more polynomials are of importance for our purpose here: One is the Jones
polynomial, called V(t), essentially a Laurent series in vt associated to some
oriented knot K such that

(1) if K isneighborhood isotopic to K*, then Vi (t) = V:(t),
(2) V(O) = 1 (self-loop),
(3) t'Vx —t Vx = (Vt — (1/V1)) V (skein relations),
and such that in particular, Vi(t) = Lg(t™). Finaly, we can aso define the
Kauffman polynomial Yy which is given such that Yy = a“®) Dy, and especialy
bears the relationship
VK(t) — [YK(t-l/4 _ tll4, _ t-3/4)]/( _ t-l/2 _ tl/2).
So what we have essentially done is to construct knot invariants by combinatori-

a means in analogy to partition functions. This can be read as a strict analogy,
because the relevant expression of the form
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<K>= Y, <KG> A

describes an expectation value of the knot diagram, and the product on the right-
hand-side expresses a product of weights. The knot diagram can be visualized
then as an observable for a system of states. In the continuous version in terms
of path integrals, this can be generalized by defining the same on a set of gauge
fields with valuesin agiven Lie agebra, such that

Zk :IdAeLTK,

where ¢ = Tr [P exp Jk A] isthe trace of the path-ordered gauge exponentia for
the connection A. (This has been discussed first by Witten and Atiyah.) It can
also be shown that spin networks can be retrieved by recalling that spinors of
type ¢, A = 1,2 (complex), giverise to agroup action of the form U 0 SL(2, C)
which acts on a spinor such that

(ULI—’)A =28 U L|JA
with the conjugate spinor

o 10
Ua=eng V% €ap= O [
(-1 00J

so that the scalar product is defined by

Wy = " eap 1P

Hence, as to spin networks, we can visualize them aternatively, as ssimplices
(and spin foams as complexes, respectively) which carry group representations
on their edges and tensor products of them on their vertices.

We add the following two remarks. 1. The correspondance discussed before
between spin networks and their dual 1-skeleta is reminiscent of the similar re-
lationship between Voronoi diagrams and Delaunay triangulations. In fact, both
of these pairs turn out to be equivalent. Indeed, by starting from a random distri-
bution of pointsin aVoronoi fashion, it islikely that eventually classical space-
time (or any other macroscopic geometry as to that) can be retrieved by means
of ,averaging“ over spin networks, once a fine tuning can be achieved in the re-
lationship between their respective dua 1-skeleta (the triangulations). Hence,
the topological structure of space (visualized in terms of ,,combinatoria topolo-
gy“) can give hints as to the detailed structure of the spin foams actually under-
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lying and thereby producing it. Similarly, on a classical and local basis, namely
within chemistry e.g., the analysis of the relationship of Voronoi diagrams and
their associated Delaunay triangulations can be aso utilized in order to infer
from the topological structure of a molecular compound to the underlying en-
zyme activities actually producing it. Some results have been achieved already
with respect to base pairing in DNA visualized in terms of Grover’'s quantum
search agorithm by Patel. Earlier, Kauffman has discussed aspects of molecular
folding utilizing knot theory. With the view to our attitude taken in the present
paper, we would like to generalize this idea in discussing the correspondence
between the macroscopic form of an urban structure as it can be described by an
appropriate morphic language on the one hand, and the underlying microscopic
processes actually producing it.

2. The other point concerns an idea of Lloyd's who advocates the concept of vi-
sualizing the Universe altogether as a quantum computer arguing that by its me-
re presence, the Universe is permanently storing and processing information. In
particular, he would like to understand as a chief result of this computation the
emergence of decohering histories which by themselves evolve sufficiently
complex structures. This aspect is very much on the line of our own argument.
Hence, we can aready recognize that knot structures turn out to establish an ele-
gant and straightforward method to evaluate complex interactions. On the other
hand, more to the point, and coming from the side of knot invariants as
discussed above in the sense of (Lou) Kauffman, we can visualize the evaluation
of the Jones polynomial as a generalized quantum amplitude, as Kauffman has
shown recently: The braiding part of the polynomial coming from the polyno-
mial’s skein relations as displayed above, can then be construed as a quantum
computation. Hence, knot invariants show up as quantum computation. Kauff-
man utilizes the following concept of a quantum computation: It consists basi-
cally in the application of a unitary transformation U to an initial qunit (not a
qubit with two entries, but now with n entries) ¢ with @0 % = 1 plus an obser-
vation of Uy. This will return the ket Oa> say, with probabilityOUYLCF. If we
start in [a>, then the probability that this arrangement will return (b> isin fact

& bOUOa>[F.
Then we introduce an operator formalism in Dirac notation:
[ (cup) =Ha>: C - V OV (creation ket),
n (cap) = <blJ: V OV - C (annihilation bra),

<bOola> = <blla>: C - C (vacuum-vacuum amplitude).
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Note that with Pr = Jy><x[Jas projection operator, and Q:= Pr/ <x[ly>, we have
also QQ = Q. That is, the sum of projections is equal to the identity which rela-
tes to the completeness of intermediate states. In other words: The amplitude for

going from a to b consists of the summations of contributions from al the paths
connecting a with b. This is obviously consistent with the Feynman picture
discussed earlier. Hence, what we have to do is to visualize the bracket model as
a vacuum-vacuum amplitude. Then it can be configured as a composition of
operators (cups, caps, braiding) — provided the braiding is unitary. This can be
clearly viewed as a quantum computation: Choose the Cup as ,,preparation” part
and the Cap as ,detection” part of the computing, and call M the unitary brai-
ding operator, then this can be summarized by the expression

Zy = <CupM OCap>.

Hence, referring back from knots to their constituents, it is spin networks that
can be thought of as representing the most fundamental channels of information
transport: It isin fact quantum computation which is permanently being perfor-
med through the channels the spin networks provide. The latter serve as a kind
of universa lattice through which the information produced by quantum com-
putation is percolating such that an eventual threshold clustering in the sense of
percolation theory spontaneously creates the onset of classicity. The actual route
taken isthat viathe formation of knotsin terms of spin networks and loops. That
IS, in the end, the classical world can be visualized equivalently as a ,,condensa-
tion" of knotted spin networks. More recently, a similar path (but with different
conclusions) has been taken by Stuart Kauffman and Lee Smolin: They basically
utilize a deterministic model of directed percolation to achieve similar results
and show that this can be visualized as a cellular automaton. The ideais then to
give the necessary criteria for a percolation phase transition which renders the
system behaviour critical, which turns out to be essentially a derivation from
Kauffman's idea of a ,fourth law“ of thermodynamics. He basically asks whe-
ther we can find a sense in which a non-ergodic Universe expands its total di-
mensionality, or ,total work space”, in a sustainable way as fast as it can. He
then refers to Smolin’s interpretation of spin networks and their knotted structu-
res at Planck scale level as ,,comprising space itself“. He suggests that knotted
structures are combinatorial objects rather like molecules and symbol strings in
grammar models, and he expects that such systems become ,,collectively auto-
catalytic” - practically showing up as knots acting on knots to create knots in
rich coupled cycles not unlike a metabolism: ,, The connecting concept will be
that those pathways into the adjacent possible along which the adjacent possible
grows fastest will simultaneously be the most complex and most readily lead to
guantum decoherence, and classicity. If complexity ‘breeds classicity, then the
Universe may follow a path that maximizes complexity.“ Thisisin fact his con-
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cept of a ,fourth law*: that the adjacent possible will be attained which could
account for the explicit ,,semantics‘ and dynamics of evolution.

There are two aspects in favour of these ideas. 1. the already mentioned case
that classical geometry can be approximated by an average over all possible
Voronoi configurations over a (n as yet) Riemannian manifold, as shown in the
works of Luca Bombelli, and 2. the also mentioned case of the Barrett-Crane
model for spin foams. As John Baez has formulated once in an e-mail discussi-
on: ,,Now some people call astate in C* a, spinor‘, but other people call it a, qu-
bit. And what we are really doing, from the latter viewpoint, is writing down
,quantum logic gates' which manipulate ,qubits’ in an SU(2)-invariant way — in
fact, an SL(2,C)-invariant way! In short, we're seeing how to build little
Lorentz-invariant quantum computers. From this crazy viewpoint, what the Bar-
rett-Crane model does is to build a theory of quantum gravity out of these little
Planck-scale quantum computers.”

4 Conclusion

It should have become transparent after all what we are aiming at: The ideaisto
visualize the evolution of a macroscopically observable urban structure as the
outcome of a superposition of social actions modelled in terms of a state func-
tion formalism (or decoherence) of al constitutive processes taking place on the
microlevel of the respective socia collective. The methods applied shall enable
the inference from the observed topological structure to the underlying dynamics
producing it. In other words: The social logic of space shall be retrieved by re-
constructing the fundamental motion on which it is actually being based.
Process governs structure in this sense, not viceversa, as has been assumed for a
long time. The relation between process and structure resembles therefore the
celebrated relation between micromotives and macrobehaviour in the sense of
Thomas Schelling. As to decentralization being visualized as an organizing
principle for urban structures in particular, we notice that this specific evolutio-
nary mode is implemented into the systematics of the approach from the outset,
because it turns out as a straightforward consegquence of the mediation structure
between micro and macro, in the first place. With a view to the actual research
undertaken with respect to the evolution and structure of the historical centre of
Bologna, the idea is to compare the specific logic of space in that case with the
former political concept of decentralization as it has been operated by the city
administration for along while in the past. Further work is forthcoming.
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